Jesse B. Campbell, Francisco Mateo, Felix R. Melendez, Dingwen Wang, Shixian Yang, Metin Yorulmaz, Ramasri Desetty, Stevie J. Gabriel, Yuan Lin

633 Group 1 - Project Report
Introduction

The goal of our project is to produce an online medical record access system, called MediRecords, using distributed systems. The purpose of having an online medical record system is to offer an easier way for patients and doctors to have access to patient’s records. This proves to be beneficial when it comes to emergency situations and the records are immediately available. The patient could also keep track of how their health situation is going. Every doctor visit, along with their prescriptions, are readily available through MediRecords.
MediRecords is not only beneficial for both doctors and patients, but also for insurance companies. The insurance companies could get up to the minute information on the type of procedures their clients are submitting. The insurance companies could immediately allow the procedure and instantaneously offer payments to the doctors or hospitals. This proves to be a more efficient way of processing any medical needs.

 The foundation of our project is Amazon Web Services (AWS). AWS provides a system to create virtual servers within the AWS remote computing center, also known as the cloud. On those servers, we configured both Windows and Linux operating systems and installed MySQL and Java Enterprise Edition Glassfish to execute our project.

From the client’s perspective, our application functions as a dynamic web application. However, it is a complex, three-tier system. Our project separates business and presentation logic to fulfill the Model View Controller (MVC) design paradigm.

Group Plan

We met once a week before class to discuss the project. Stevie Gabriel volunteered to act as Project Manager. He posted a thread to request project ideas and the team later voted on the idea of online medical record system. Stevie posted a Moodle thread and asked members to post their preferred role. Some members volunteered for a role and the rest were assigned a role. Mateo and Campbell volunteered to work as administrators. Mateo set up the AWS accounts.

The administrative goal was to provide team members with the tools needed to develop the application. File system access was provided through FTP and SFTP. The tools used to provide access to the execution environment are: SSH, VNC/RDP, and HTTP access.

To allow the team to test their work while he learned to configure Linux, Campbell configured a Windows Server 2003 instance with the following services: FTP, MySQL/phpMyAdmin, Apache, Tomcat/Open EJB, and GlassFish. Campbell configured two Linux servers to meet the project requirements while the team did work on the Windows Server.

Source code was shared on the Google Code Subversion (SVN) Repository. Communication happened on Moodle in the Team Forum. Google Documents was used to collaborate on the project Powerpoint and report.

Team Members and Their Contributions

	Team Member
	Assigned Role
	Contribution

	Campbell, Jesse B.
	Administrator & Server Programmer
	· Created servers, firewall, keypair, elastic IPs
· Configured Glassfish, SSL, MySQL

· Programmed project demo in JSP

	Mateo, Francisco
	Administrator & Interface Programmer
	· Created AWS accounts
· Wrote client front page

	Melendez, Felix R.
	
	

	Wang, Dingwen
	Server Programmer
	· Built a simple login RESTful web service as an example of showing how to using EJB 3.1 with annotation.
· Suggested our team to use Glassfish server instead of Apache Tomcat + openEJB.

· Participated in and initiated several team discussions.

	Yang, Shixian
	Interface Programmer
	· Wrote client front page

	Yorulmaz, Metin
	Database Administrator & Programmer
	· Created database and tables.
· Programmed EJBs

· Programmed Web Application using JSP, Servlet, HTML and CSS. Applied MVC

	Desetty, Ramasri
	Client Programmer
	

	Gabriel, Stevie J.
	Project Manager
	· Coordination
· Assigned roles

	Lin, Yuan
	Client Programmer
	

Problems Encountered

1. Problem AWS uses Identity and Access Management (IAM) which was really hard to setup
[image: image1.png]

Solution It took a while to get IAM set-up but it finally was working and setup users.

[image: image2.png]
2. Problem Setting up Amazon Machine Images for the first time was daunting.
Solution Got the AMI’s reference names and figured out what was included in each.
[image: image3.png]
3. Problem Couldn’t remotely login to instances using SSH.
Solution Create and associate each instance with keypair. Use a keypair instead of a password.
4. Problem Couldn’t load keypair into Putty.
Solution Use PuttyGen or another SSH client such as Bitwise Tunnelier.
5. Problem Couldn’t load a remote GUI on Linux instances.
Solution Only some Linux instances have a GUI installed such as Ubuntu.
6. Problem Synaptics Package Manager on Ubuntu didn’t install certain software.
[image: image4.png]
Solution Use apt-get at the command-line instead.
7. Problem Couldn’t find applications to install applications on Ubuntu via apt-get.
Solution Run the “apt-get update” command first.
8. Problem Keyboard on Ubuntu VNC connection was mismapped.
[image: image5.png]
Solution Edit xstartup and add the following line: “export XKL_XMODMAP_DISABLE=1”.
9. Problem Server stopped responding to requests (crashed).
Solution Remotely unplug the hard drive and plug it into another virtual computer. Then, copy the data off the drive.
10. Problem Amazon was temporarily out of resources and couldn’t launch spot instances.
[image: image6.png]
Solution Wait for resources to become available.
11. Problem phpMyAdmin showed warnings about missing PHP components.
Solution Install the missing php components: mysql, mcrypt, …
12. Problem Couldn’t remotely access MySQL database.
Solution Grant access using a “GRANT … “ statement.
13. Problem The FTP server used random ports for data transfer. Most of the time FTP transfers were within the firewall’s blocked port range.
Solution Force the FTP server to use a certain range of ports and unblock those ports.
14. Problem AWS fees haven’t appeared and charges didn’t accrue at the end of the month.
Solution Unknown
15. Problem Very high memory usage causing disk thrashing on local development machine.
[image: image7.png]
Solution Close all unnecessary programs and services to reduce Physical Memory usage. Eclipse JEE (javaw.exe) and Glassfish (java.exe) use over 800 MB of RAM, which is about 4 times more than the Windows 7 Operating System.
16. Problem It is not possible to rename security groups or remap instances’ security groups.
Solution Leave the names alone or start over with new instances.
17. Problem HTTPS presents warning.
[image: image8.png]SolutioSolution Add exception or register a new certificate with a certificate authority ($).

Lessons Learned

1. Amazon Web Services provides a good framework for distributed applications.

2. AWS did not offer an easy way to setup team users. They did offer a command line interface for manually set-up of users and permissions.

3. Various Amazon Machine Instances are available through the Amazon Management Console. Getting the right one was another task that took time.

4. Remote instances can stop communicating (crash). These instances can be remotely detached and repaired. It is a good idea to keep snapshot backups as a safety measure.

5. The benefits of Glassfish EJB are pooled database connections and resource aliases.

6. The weaknesses of EJB are greater code complexity, slow startup/shutdown, and high memory usage. EJB files are stored in different directories and require meta-data. EJB makes it harder to work collaboratively because the source code is more complicated than a web application.

7. At the beginning of the project, it’s critical to make sure that every team member fully understands what the business is all about, or the whole team cannot progress synchronously later then.

8. At the beginning of the project, it’s the design that matters instead of just technologies, or team members would get lost and don’t know what exactly his job is, which would be a hold-back of progress.

9. Face-to-face discussion is the unmatched way to communicate efficiently and even better with preparation.

Screenshots

Tier 1: Client, Web

[image: image9.png]
Tier 2: EJB, Glassfish

[image: image10.png]
Tier 3: Database, MySQL

[image: image11.png]
Usage Demonstration

MediRecords

Architecure

[image: image12.png]
MVC

Models are domain entities.

Views are jsp files.

Controllers are servlets.

Life Cycle

The life cycle starts with a request to a servlet. The Servlets check if the user is authorized, then it does the appropriate actions. At the end it renders a jsp file or redirects to another servlet.

Models

Models are java classes that represent domain entities like doctor, patient etc. Persistence of these entities is provided with EJBs. Basically DoctorRecordEJB manages records that are created by a doctor. To save a record, it takes a DoctorRecord entity as a parameter and saves to the database. When all records are requested, EJB makes a query to database, creates a collection of DoctorRecord entities and returns the collection to the client.

Our Models

Doctor.java

DoctorRecord.java

Insurance.java

InsuranceDoctor.java

InsuranceRecord.java

Patient.java

PatientRecord.java

Person.java

Profile.java

Record.java

RecordStatus.java

User.java

There is not one-to-one relationship between our database tables and models. For example Doctor, Patient and Insurance models inherit from Person model and the represent data from tables: users and user_details. Same thing goes for Record classes.

EJBs

EJBs are used to provide persistence. The also do the business processes like approving a claim. When we want to save a DoctorRecord, the save method of DoctorEJB is called and DoctorRecord object is passed to persist in database. Since our EJBs and Models are in same JVM, we do that easily.

Business transactions and database operations are made by EJBs. EJBs are accessed from servlets and methods are called to get data or do a transaction.

DoctorEJB.java

DoctorInsuranceEJB.java

DoctorRecordEJB.java

InsuranceEJB.java

InsuranceRecordEJB.java

PatientEJB.java

PatientProfileEJB.java

PatientRecordEJB.java

ProfileEJB.java

SessionEJB.java

Views

JSP files are being used as views. A Servlet decides which JSP file to be rendered. JSP pages contain CSS class reference, HTML tags.

Basically, each role(Patient, Doctor, Insurance) have a landing page. Landing pages are located under WebContent folder:

doctor.jsp

insurance.jsp

patient.jsp

Other jsp pages are under the WEB-INF folder because we don’t want them to be accessed directly.

Controllers

The servlets are doing the controlling job. It provides interaction between views and models. The servlet gets data from the database or instantiates required objects. Then it calls the methods of those objects to handle the business processes and returns the results to a JSP file to show the result.

The doGet method is called when a get request is made. This simply renders html. When user posts data to the servlet, the doPost method of that servlet is invoked.

Our Controllers

Doctor.java

DoctorNetwork.java

DoctorProfile.java

DoctorRecordNew.java

DoctorRecords.java

Insurance.java

InsuranceNetwork.java

InsurancePatients.java

InsuranceRecords.java

Patient.java

PatientProfile.java

PatientRecords.java

Session.java

ER Diagram

[image: image13.png]
13

